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ABSTRACT

Unlike the conventional �rst-order network (FoN), the higher-order
network (HoN) provides a more accurate description of transitions
by creating additional nodes to encode higher-order dependencies.
However, there exists no visualization and exploration tool for the
HoN. For applications such as the development of strategies to con-
trol species invasion through global shipping which is known to
exhibit higher-order dependencies, the existing FoN visualization
tools are limited. In this paper, we present HoNVis, a novel visual
analytics framework for exploring higher-order dependencies of the
global ocean shipping network. Our framework leverages coordi-
nated multiple views to reveal the network structure at three levels
of detail (i.e., the global, local, and individual port levels). Users
can quickly identify ports of interest at the global level and spec-
ify a port to investigate its higher-order nodes at the individual port
level. Investigating a larger-scale impact is enabled through the ex-
ploration of HoN at the local level. Using the global ocean shipping
network data, we demonstrate the effectiveness of our approach
with a real-world use case conducted by domain experts special-
izing in species invasion. Finally, we discuss the generalizability
of this framework to other real-world applications such as informa-
tion diffusion in social networks and epidemic spreading through
air transportation.

1 INTRODUCTION

Modern day systems are complex, whether they are movements
of hundreds of thousands of ships to form a global shipping net-
work [14], powering the transportation and economy while inadver-
tently translocating invasive species; interactions of billions of peo-
ple on social networks, facilitating the diffusion of information; or
complex metabolic systems representing rich cellular interactions.

The complex systems are often represented as networks, where
the components of the system are represented as nodes and the in-
teractions among them are represented as edges or links. This net-
work based representation facilitates subsequent analysis and vi-
sualization. For example, the global shipping activities are usu-
ally represented as a global shipping network, with ports as nodes,
and the amount of traf�c between port pairs as edge weights [16].
Traditionally, creating networks from such ship movement data has
followed the port-to-port movement of a ship, and ignores the his-
toric trajectory of the ship. This becomes extremely limiting as it
has been observed that ship movements actually depend on up to
�ve previously visited ports [30]; other types of interaction data
from communication to transportation often exhibithigher-order
dependencies[24, 9]. Therefore, when representing data derived
from these complex systems, conventional network representations
that implicitly assume the Markov property (i.e.,�rst-order depen-
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dency) can quickly become limiting, undermining subsequent net-
work analysis that relies on the network representation.

To address this problem, prior work has proposed the use of
higher-order network(HoN) to discover higher-order dependencies
and embed conditional transition probabilities into a network rep-
resentation [30]. For the global shipping network example, instead
of mapping every port to a single node, each higher-order node in
HoN encodes not only the current step (the port that a ship cur-
rently stays) but also a sequence of previous steps (the ports that a
ship visited before arriving at the current port). Therefore, the tran-
sitions among nodes in a HoN are now conditional, and are able to
reproduce complex ship movement patterns more accurately from
the raw data. HoN features direct compatibility with the existing
suite of network analysis methods, such as random walking, clus-
tering, and ranking, thus serving as a powerful tool for modeling
the increasingly complex systems.

HoN is the correct way of representing complex systems that
defy the �rst-order dependency assumptions. Despite the impor-
tance of HoN and its applicability to network analysis, there has
not yet been a visualization tool that can handle the richness of the
HoN representation. In this work, we team up with two domain ex-
perts in network science and marine ecology and develop a visual
analytics framework, named HoNVis, to facilitate the exploration
and understanding of HoN. The global shipping network, being an
important application of HoN for the study of invasive species, is
used as a case study and for illustration throughout this paper, al-
though the general approach we take can be applied to other types
of HoNs. We focus on the formation and impact of higher-order
nodes, e.g., why a higher-order node exists in a HoN and how the
species may propagate from a port to other ports given the previ-
ous steps? Speci�c to the shipping network case study, we aim to
answer these questions through a three-step exploration process: 1)
global identi�cation of ports of interest, 2) detailed observation of
the connections of an individual port, and 3)tracing the propaga-
tion of invasive species from port to port through shipping. Ac-
cordingly, we lay out the design of HoNVis in Figure1. The input
data are converted to the FoN and dependencies are extracted to
construct the HoN. From these network representations, we iden-
tify nodes of interest. The visualization includes �ve coordinated
views: geographic viewand table viewshow information related
to a single node;dependency view, subgraph view, andaggrega-
tion viewshow connections among multiple nodes. Together these
�ve views enable users to explore higher-order nodes and their de-
pendencies, allowing insights to be gained from this comprehensive
system.

2 RELATED WORK

HoN Visualization. HoN visualization is sporadic in the litera-
ture. Blaas et al. [6] proposed to visualize higher-order transitions
by connecting nodes using higher-order curves. By following a
smooth curve from one end to the other, one can identify which
nodes are associated with higher-order transitions and what are the
orders of the nodes. Rosvall et al. [24] grouped higher-order nodes
by their current nodes and drew directed edges between connected
nodes. The higher-order nodes representing the same physical lo-
cations are placed in one circle to build the correspondence. This
approach, although intuitive, does not scale beyond the second or-
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Figure 1: The framework of HoNVis design. FoN and HoN are converted and extracted from the raw trajectory data, from which we identify
nodes of interest. Five linked views are designed to enable the interrogation of single and multiple nodes.

der, nor when more than a dozen of higher-order nodes representing
the same location coexist. HoN is also used as an analysis tool in
unsteady �ow visualization for better workload distribution. Zhang
et al. [32] employed high-order dependencies to estimate the desti-
nations of particles given their previous locations, providing more
accurate information about which data blocks to load at the next
step.

Visual Path Analysis and Graph Comparison.For �rst-order
networks, quite a few works have been presented on visual path
analysis and graph comparison. We refer readers to survey papers
[3, 27, 2, 28, 5] for a comprehensive overview. Bodesinsky et al. [8]
proposed an interface with coordinated multiple views to explore
sequences of events. The event view visualizes each sequence of
events as horizontally aligned bars. Event patterns are summarized
in a pattern overview from which users can query a certain pattern
to highlight the recurring instances in the event view. Partl et al.
[22] designed Path�nder to analyze paths in multivariate graphs. A
node-link diagram visualizes the paths between queried nodes, and
a ranked list shows the attributes associated with the nodes. Wong-
suphasawat et al. [29] presented LifeFlow to study and compare
multiple event sequences. Each sequence is displayed in a horizon-
tal bar, and the events in different sequences are aligned vertically
for easy comparison. Detailed event information for each sequence
is displayed as a list.

Movement Data Visualization.Spatiotemporal movement data
(e.g., traf�c and trajectory) are often encoded as conventional
graphs, where each node represents a location and an edge repre-
sents the traf�c volume between two locations without distinguish-
ing their previous locations. Guo [12] used the location-to-location
graph to visualize population migration in the United States. The
spatial regions are partitioned to form hierarchies and support node
aggregation at the regional level. The �ow is clustered based on the
associated variables, such as the number of migrants for different
ages and income levels. von Landesberger et al. [26] presented the
MobilityGraph to visualize mass mobility. They also grouped the
regions for clearer observation. To obtain a common movement pat-
tern, a temporal clustering is performed based on the graph's feature
vectors generated in different time spans. However, both works do
not consider higher-order dependencies and therefore, they are not
able to answer the questions such as how many migrants in Chicago
who came from Los Angles would �nally move to New York City.

3 BACKGROUND

Conventional FoN.Usually the network representation of a com-
plex system (e.g., global shipping) is not directly available, but
needs to be constructed from the raw event sequences (e.g., ship
movements) produced by the system. The conventional approach
to construct a network from the raw data is to count the number
of observed interactions between entities as the edge weights be-
tween node pairs. For example, given the observed ship move-
ments shown in Figure2 (a), a conventional shipping network is
constructed as shown in Figure2 (b), with every node representing
a port and every edge representing the amount of traf�c between
a pair of ports. Since only direct movements are preserved in the
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Figure 2: (a) An example of raw trajectory data. (b) Construction
of the FoN from raw trajectory data. (c) Extraction of higher-order
dependencies from raw trajectories. (d) Construction of the HoN
from higher-order dependencies.

network structure as pairwise connections, this approach implicitly
assumes the Markov property, i.e., a ship's probability of moving
from the current portit to the next portit+ 1 is proportional to the
edge weightw(it ! it+ 1). In the example of Figure2 (b), a ship is
equally likely to move to portsX andY from portM, regardless of
from where the ship coming toM. However, from Figure2 (a), it is
apparent that ships coming fromA to M are more likely to go toX,
and ships coming fromB to M are more likely to go toY. Such im-
portant information about higher-order dependencies is lost using
the conventional approach.

Construction of HoN. It has been shown that higher-order de-
pendencies exist ubiquitously in �ow dynamics such as ship move-
ments, air traf�c, and web clickstreams. The study on how to ex-
tract and represent arbitrary higher-order dependencies in networks,
however, has just emerged. Recently, Xu et al. [30] proposed an
approach that extracts higher-order dependencies from raw event
sequences and embeds those dependencies into a FoN. As illus-
trated in Figure2 (c), in the context of global shipping, the method
�rst evaluates if knowing the ship came fromA to M signi�cantly
changes the probability distribution of the ship's next step from
M. If the change, as measured by the Kullback-Leibler divergence
(KLD) [ 18], is signi�cant, as the case shown in Figure2, it suggests
that the ship movements depend on not only the current portM but
also the previous portA. This comparison is iterated recursively to
extract higher-order dependencies. Next, in the network represen-
tation, instead of mapping every port to a single node, every node
represents the current port given a short sequence of previous ports.
For example, in Figure2 (d), the portM is now broken down into
two higher-order portsMjA andMjB, such that ships coming from
different ports toM can have different probability distributions of
choosing the next port to visit.

How Does HoN In�uence Network Analysis? An important
property of HoN is that its data structure — nodes connected by
edges — is consistent with the conventional FoN (the only differ-
ence is the node labeling), making HoN directly compatible with



the whole existing network analysis toolkit. When ship movements
are simulated on HoN as random walking, the transition probability
between ports will be

p(Xt+ 1 = iiit+ 1jXt = iiit ) =
w(iii ! iiit+ 1)
å jjj w(iiit ! jjj)

(1)

where the current portiiit denoted in bold can be a higher-order node
in the form of[it jit� 1; it� 2; : : : ], e.g.,MjA or MjA;C;E. Therefore,
although Equation1 appears to be Markovian, arbitrary orders of
dependencies can be incorporated into the equation, re�ning the
movement patterns of the simulated ship movement. This �exibility
of HoN to embedvariable orders, on the other hand, brings in new
challenges to visualization as there can be tens to hundreds of nodes
of variable orders representing the same physical port.

The HoN, being a more accurate representation of �ow dynam-
ics in the raw data, serves as a better foundation of subsequent net-
work analysis. By following the auxiliary higher-order nodes and
edges, random walkers on the HoN representation of global ship-
ping demonstrate at leasttwice the accuracy on simulating the ac-
tual ship movements than on the FoN [30]. Furthermore, while the
movement �ows are “memoryless” and are mixed in every step on a
FoN, on the HoN the �ows are more clearly distinguished. That is,
random walkers on the HoN have higher certainty in making every
step, leading to signi�cantly lowerentropy rates[24, 30]

H(Xt+ 1jXt ) = � å
iii; jjj

p(iii) p(iii ! jjj) logp(iii ! jjj) (2)

wherep(iii) is the stationary distribution at nodeiii andp(iii ! jjj) is the
transition probability from nodeiii to nodejjj as computed in Equa-
tion 1. The changes of random walkers' behavior on the HoN also
in�uence the results of important network analysis methods such
as PageRank [21] for ranking, which relies on random walkers to
simulate movements in the network. For example, these clustering
methods are based on the intuition that a random walker is more
likely to move within the same cluster rather than between different
clusters. In the HoN shown in Figure2 (d), portX receives more
traf�c from port A than from portB, thusX andA are more likely to
be clustered together. On the contrary, in the FoN shown in Figure2
(b), A andB appear to be equivalent toX, regardless of the indirect
�ow patterns. For the study of invasive species, the clustering result
on HoN provides more insight, since portX is more susceptible to
species originating fromA carried via indirect shipping.

4 DESIGN RATIONALES

We invited two domain experts from the NSF Coastal SEES col-
laborative research project, who specialize in data mining and the
application of marine ecology, and hold positions in R1 universi-
ties. They had spent �ve years on the modeling of species invasion,
and had published works in interdisciplinary journals and top con-
ferences in the domain. The experts noticed that indirect species
�ow through shipping exhibit higher-order dependencies [30], but
had been using the FoN for visualization and control strategy de-
velopment due to the lack of tools for the HoN. In this section we
review the background of species invasion research, then identify
requirements to guide our design of HoNVis.

4.1 Application Background

The ever-increasing human activities unintentionally facilitate the
transportation of species, which may outcompete native species and
cause substantial environmental and economical harm. The annual
damage and control costs of invasive species in the United States is
estimated to be more than 120 billion US dollars [23]. The global
shipping network is the dominant vector for the unintentional in-
troduction of invasive species [20]: species “hitchhike” on ships
from port to port in ballast water or via hull fouling [10]. Under-
standing the global shipping network is crucial for devising species
control management strategies. The data mining community has re-
cently produced promising observations on the global shipping net-
work [31]. For example, several clusters of ports which are loosely

connected to each other are revealed in the global shipping network.
Targeted species management strategies can be devised toward the
loose connections among the clusters to prevent or slow down the
species propagation from one cluster to another.

However, even the state-of-the-art research still faces unresolved
challenges. For example, the recent network approach by Xu et
al. [31] uses the FoN to model the species �ow between port pairs;
it is unclear from the FoN how species may propagate after multiple
steps, and it is impossible to know which port or pathway plays an
important role connecting different clusters, eco-regions, or coun-
tries. Therefore, the ability to explore the process interactively is
important for the development of species management strategies.

Meanwhile, the FoN that was used to model and visualize global
shipping is anoversimpli�cationof higher-order dependencies that
exist ubiquitously in ship movements and species �ows [30]. In
the iconic work of Kaluza et al. [16], a global cargo ship network
was built by taking the number of trips between port pairs as edge
weights, while multi-step ship movement patterns were ignored.
From the visualization of the FoN thus built, one cannot tell if ships
coming from Shanghai to Singapore are more likely to visit Los
Angeles or Seattle. Such higher-order dependencies in networks
are crucial for accurately modeling the �ow of ships and species.
However, no such a tool currently exists.

Finally, although it has been shown how ship types, ship sizes,
geographical locations and seasonality can in�uence the structure
of the �rst-order global shipping and species �ow patterns [31],
there has been no discussion on how such factors in�uence higher-
order shipping patterns. It is unknown whether higher-order move-
ment patterns are mainly formed by oil tankers, or located at estuar-
ies, or appear mainly in winters. Such information can provide in-
sight in revealing the driving forces behind the formation of higher-
order dependencies in ship movements, and aid the development of
invasive species management strategies.

4.2 Design Requirements

Given the gap between the demand to visualize higher-order depen-
dencies in global shipping and the lack of HoN visualization tools,
we identify key requirements for our visual analytics system.

R1. Create a mapping between the HoN and FoN, and quan-
tify the differences. The experts expect to see geographical loca-
tions of ports and their connections on a map, in order to select
ports at places of interest; the experts want to know if higher-order
dependencies are more likely to exist in certain geographical loca-
tions (e.g., canals and straits). Additionally, the experts expect to
learn how do the FoN and HoN representations compare with each
other in terms of network properties such as port centralities.

While the HoN contains richer information, the FoN has the sim-
plicity of one-to-one mapping from nodes to geographical locations
on a map. To combine the advantage of both representations, we
map the structure of HoN back to the FoN when visualizing it on
the map, and assign scalar values to the corresponding nodes and
edges in the FoN for comparison. The comparison can be de�ned
in multiple ways depending on the exploration goal. By default, we
quantify the difference of the transition probabilities between the
HoN and FoN. The difference can also be quanti�ed by comparing
the network analysis results. For example, domain experts are inter-
ested in the nodes with the largest PageRank [21], which effectively
simulate the �ow of invasive species; the PageRank differences can
help to identify ports with underestimated risks in FoN. In brief,
mapping the difference or important values to FoN provides clearer
observation on the map view and allows users to effectively identify
and select the regions of interest for further exploration.

R2. Provide aggregation view of the higher-order nodes.The
experts would like to explore port connections at different granular-
ities, such as connections among countries, continents, eco-regions,
eco-realms, etc. Therefore, the higher-order nodes should be aggre-
gated and visualized for high-level knowledge discovery. For exam-
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Figure 3: The overview of HoNVis, our visual analytics system for exploring the global shipping higher-order network. (a) Geographic view.
(b) Dependency view. (c) Subgraph view. (d) Aggregation view. (e)Table view. (f) Parameter panel.

ple, it should provide information such as how many nodes with the
highest order exist in an eco-realm (to reveal geographical distribu-
tion of higher-order dependencies), how many pathways incorpo-
rated in higher-order nodes navigate through multiple eco-realms
(to identify non-indigenous species diffusion pathways), and so on.
The level of aggregation should be �exible so that users can observe
the connections at different granularities, such as countries, conti-
nents, eco-regions, eco-realms, temperature and salinity ranges, etc.

R3. Visualize higher-order dependencies associated with a
given port. The experts �rst want to know that given a port,how
do the previous steps change a ship's choice of the next step. For
example, ships currently at Singapore may have equal probabilities
of going to Los Angeles and Seattle. The experts wonder if ships
coming from certain ports to Singapore will make them more likely
go to Los Angeles, and how much the difference is. Meanwhile,
the experts want to know if certain features correlate with the exis-
tence of higher-order dependencies. For example, are higher-order
dependencies mainly associated with certain types of ships (such as
oil tankers), or certain geographical locations (such as canals)?

Therefore, when a port of interest is designated, a subgraph of
HoN containing all higher-order nodes and edges associated with
the port of interest should be generated. The transition probabilities
from different higher-order nodes to the next node should be repre-
sented, in order to show how the previous ports a ship has visited
may in�uence the ship's next step. Additionally, the attributes of
ships corresponding to the transitions should be shown, such that
users may discover certain higher-order movement patterns exclu-
sively associated with certain types of ships, particular months, and
so on. For example, if the ships moving between two ports are
mostly passenger ships, the ship is likely to return to the previous
port, since passenger ships are likely to move between two ports in-
stead of among multiple ports. Therefore, we should encode these
attributes associated with transitions, so that once transitions of in-
terest are identi�ed, users can observe the corresponding attributes.

R4. Visualize and expand a subgraph.In the context of inva-
sive species studies, the experts hope to see if higher-order depen-
dencies are evenly distributed in the network or only exist in certain

groups of tightly connected ports. The experts also expect to vi-
sualize and expand a subgraph of invaded ports to understand how
invasive species propagate from a given port. The expansion should
be performed forward or backward to cover more nodes along paths
of interest. This allows interactive exploration and facilitates case
studies on studying the species �ow along certain shipping path-
ways. To understand the in�uence of these paths to the entire net-
work, such as which are the important pathways that connect dif-
ferent clusters of ports, visual connections should be established
between the subgraph and the entire network.

5 SYSTEM DESCRIPTION

We design �ve coordinated views to meet the design requirements
stated in Section4. The �ve views of our HoNVis are: 1) age-
ographic viewwhere the geographical locations of ports and the
connections among them are displayed; 2) adependency viewthat
shows all the higher-order nodes associated with a given port, as
well as the previously visited ports and the next possible ports
to visit (Section5.1); 3) a subgraph viewthat compares a user-
generated subgraph with the graph showing the entire HoN (Sec-
tion 5.2); 4) anaggregation viewthat visualizes higher-order de-
pendencies under a certain aggregation criterion (Section5.3); and
5) a table viewthat displays the detailed text information of a port
or the current user exploration status. Users can hide the aggrega-
tion view to leave more vertical space for the dependency view. All
these �ve views are linked together through brushing and linking.
Labels of higher-order nodes/ports will be shown in the dependency
view and subgraph view, since they cannot be inferred from the re-
spective layout.

With HoNVis, a typical user work�ow is as follows. Users start
from the geographic view and aggregation view. In the geographic
view, they identify through visual encoding (red to gray to blue for
high to medium to low), the ports with more higher-order nodes
or ports whose rankings change the most in the HoN compared to
the FoN. In the aggregation view, both the current nodes and their
previous steps are aggregated according to a given criterion. For
example, when the entire network is aggregated at the eco-realm



level, users can ef�ciently identify the higher-order nodes whose
previous steps contain ports in other eco-realms, suggesting non-
indigenous species introduction pathways. Users may then spec-
ify a port for individual port investigation: all higher-order nodes
containing pathways leading to the given port will be visualized in
the dependency view, showing how ships or species coming from
different pathways to the current port will have different probabil-
ity distributions of choosing the next port. Assuming a potentially
invasive species in the current port, users can also trace species dif-
fusion in the subgraph view, and understand how the species may
propagate to different clusters of ports. Starting from the higher-
order nodes directly related to the speci�ed port, users can expand
the subgraph of invaded ports by tracing forward or backward and
including the nodes visited. This stepwise expansion gradually �lls
the gap between the one-step neighborhood of the selected port and
the entire global shipping network, which helps users evaluate the
impact of a port or a higher-order node at a larger scale. After
each user operation, we use animated transition to emphasize the
changes in other views, indicating where to explore in the next step.
In the following, we describe the dependency view, subgraph view,
and aggregation view. The other two views (refer to Figure3 (a)
and (e)) are omitted as their design and roles are straightforward.

5.1 Dependency View

Given a set of higher-order nodes, the dependency view shows the
connections among previously visited ports and next possible ports
to visit. It corresponds to the design requirementsR1 andR3. The
higher-order nodes being investigated can be the higher-order nodes
associated with a port selected in the geographic view, or multiple
higher-order nodes contained in an aggregated node selected in the
aggregation view. The transitions between the higher-order nodes
and their next possible ports can be �ltered by the probabilities or
the number of ships associated with the transitions. This produces a
compact visualization allowing the more important transitions to be
observed clearly. A set of attributes is assigned to the ports, provid-
ing visual hints to guide the exploration. These attributes include
computed ones (e.g., PageRank in the FoN, aggregated PageRank in
the HoN, and the number of associated higher-order nodes) and the
geographical properties (e.g., temperature, salinity, and eco-realm).

Higher-Order Nodes. Each higher-order node is displayed as a
rectangle, as shown in Figure3 (b). Each rectangle is divided into
two boxes: the upper and lower boxes. The upper box indicates
the entropy of transition probabilities starting from the higher-order
node, where blue/white corresponds to low/high entropy (low en-
tropy corresponds tohigh certainty). The lower box indicates the
KLD of the transition probability distributions of the higher-order
node and its corresponding �rst-order node, where red/white cor-
responds to high/low KLD. These two properties are of particular
interest, since the �rst one represents thecertaintyof the next port
to visit given the higher-order dependency and the second one rep-
resents thedifferencebetween the higher-order node and its corre-
sponding �rst-order node. Therefore, distinct higher-order patterns
signi�cantly different from �rst-order ones show a combination of
blue and red boxes and can be identi�ed at a glance. In Figure3 (b),
we observe considerable blue/red combinations, indicating higher-
order dependencies of potential interest that are not captured in the
FoN. Higher-order nodes with high entropy or low KLD values,
though less interesting by themselves, are indispensable for bridg-
ing the connection of other higher-order nodes.

If the number of higher-order nodes is large, we only display the
lower KLD boxes of nodes, since KLD is the deciding factor for
extracting higher-order dependencies and is more relevant to the
formation of higher-order nodes. The higher-order nodes are lined
up according to their current ports and orders: the nodes with the
same current port are contiguous and the node with highest/lowest
order is placed at the top/bottom of that contiguous space.

Previous Ports. We display the previous ports as circles to the

left side of the higher-order nodes, as shown in Figure3 (b). For
each higher-order node, we draw a smooth high-order Catmull-
Rom spline to connect its corresponding ports in the visit order for
clear observation, as suggested by Blaas et al. [6]. The curves ex-
hibit color transition from red to blue, indicating the visit order of
ports (i.e., red indicates the port visited �rst and blue indicates the
current port).

We determine the layout of the previous ports using a simple
heuristic: theirx-coordinates are determined by their earliest ap-
pearance in any higher-order nodes; and theiry-coordinates are de-
termined by the averagey-coordinates of the higher-order nodes
containing them. The ports that are placed at the same locations
are moved vertically to resolve the con�ict. In Figure3 (b), we
�nd that the ports are aligned from left to right in their visit order
for most higher-order nodes. The ports associated with individual
second-order nodes are mostly placed at the lower part of the depen-
dency view and the ports associated with more higher-order nodes
are mostly placed at the upper part. More sophisticated algorithms
exist for drawing directed graphs, but they tend to increase the hor-
izontal span in order to better preserve the order of nodes, which
may not be ideal in our scenario given the limited screen space.

Next Possible Ports.We display the next possible ports as cir-
cles to the right side of the higher-order nodes, as shown in Figure3
(b). The opacity of an edge connecting a higher-order node and a
next possible port indicates the corresponding transition probabil-
ity. In Figure3 (b), since most edges associated with higher-order
nodes are dark, their next steps to take are fairly certain. Further-
more, the edges associated with the �rst-order node at the bottom
share similar light colors, which indicates that the next possible
ports will be visited with similar probabilities.

The next possible ports can be lined up to reduce edge crossing or
re�ect a user-speci�ed property. To reduce edge crossing, we �rst
estimate they-coordinate of a port using the averagey-coordinates
of the higher-order nodes connecting to that port weighted by their
respective transition probabilities. Thus, a port will be placed closer
to the higher-order nodes that are more likely to transit to it. Then,
all ports are evenly spaced to span the entire screen space along a
vertical line, preserving their estimatedy-coordinates. Users can
also arrange the ports according to an associated property. This
facilitates the identi�cation of transitions related to certain charac-
teristics (e.g., high temperature or a certain eco-realm).

Interaction. Users can select a previous port in the dependency
view for investigation. The curves associated with that port will
maintain their colors, while the other curves will become gray. In
the table view, we display the names of the higher-order nodes con-
taining the selected port and the information of this port. In the
subgraph view, the subgraph will be updated as well, so that users
can study the propagation pattern given that port as a previous node.
Users can further select a set of next possible ports. To provide de-
tailed information, we display two histograms of ship types and
temporal activities of the transitions between the selected higher-
order nodes and the next possible ports.

5.2 Subgraph View

The subgraph view visualizes a subgraph of the HoN in the con-
text of the entire network, corresponding to the design requirement
R2. It shows the topological proximity of ports, and allows users
to expand the subgraph of invaded ports to explore how the inva-
sive species will propagate over the network. The entire HoN is
described by a layout of the network using ForceAtlas2 [15]. Mean-
while, the structural organizations of HoN also in�uence the propa-
gation dynamics. For example, the global shipping network is nat-
urally organized into multiple communities; in each community the
ports are tightly coupled by shipping traf�c. Once a given species
is introduced to a community, the species will propagate through
the whole community shortly. Therefore, locating theentry points
andpathwaysto communities is essential to devising species con-



(a) (b)
Figure 4: The subgraph view. (a) HoN scatterplot and subgraph.
(b) HoN scatterplot, subgraph expanded from the subgraph shown
in (a), and stacked histogram showing node contribution.

trol strategies. We apply the widely-used Louvain method [7] for
community detection, using edge weights and the default resolu-
tion of 1.0. Note that higher-order nodes representing the same port
could belong to different communities, which naturally yield over-
lapping clusters and indicate how certain ports may be susceptible
to multiple sources of species invasion.

We visualize the entire HoN using scatterplot, where each point
represents a node in HoN, colored by the community of that node.
The edges in the HoN are ignored for clutter reduction. The sub-
graph is then displayed on top of the scatterplot. Each node in
the subgraph is drawn as a semi-transparent circle, whose center
is placed at the corresponding point in the scatterplot. The trans-
parency of a circle indicates the probability of the corresponding
node being reached during the expansion of the subgraph. An edge
in the subgraph is drawn as a straight line with transparency indi-
cating the corresponding transition probability. In Figure3 (c), the
subgraph expanded from the two higher-order nodes selected in the
dependency view is displayed on top of the HoN scatterplot. We
can see that the subgraph mostly covers the lower right branch and
the lower middle region of the network. As an option, users can
choose not to overlay the subgraph and the HoN scatterplot. In that
case, the HoN scatterplot will be displayed in the top-left corner of
the subgraph view, as shown in Figure4 (a). Without the overlay,
the nodes in the subgraph can be observed more clearly, but the
covered regions can only be roughly interpreted.

Subgraph Expansion. Subgraph expansion is performed by
tracing from the nodes in the current subgraph and including the
nodes reached during the tracing. Users can trace backward to �nd
out through which nodes the subgraph can be reached or trace for-
ward to explore the nodes that will be reached from the nodes in the
current subgraph. The subgraph expansion procedure starts from
a set of higher-order nodes selected in the other views. The ini-
tial probability of reaching a node is proportional to the number
of ships leaving/arriving that node when tracing forward/backward.
After each tracing step, the probability of reaching a nodeni will
be updated toå n j 2N(ni ) p(n j )p(eji ), whereN(ni) is the set of nodes
from which ni will be reached,p(n j ) is the probability ofn j be-
ing reached, andp(eji ) is the transition probability fromn j to ni .
The expansion can be observed in both the HoN scatterplot and the
geographic map, where the ports associated with any node in the
subgraph is highlighted. A tracing step is only performed when
users click the “Trace” button in the parameter panel. This allows
users to observe the propagation pattern in a stepwise manner.

Identi�cation of Contributing Nodes. By contributing nodes,
we mean the nodes that lead to the coverage of a certain commu-
nity or certain regions in the HoN. The contribution of a noden to
a communityc is measured by the number of nodes inc that are
reached directly throughn for the �rst time. The total contribution
of a noden is the summation of its contributions to all communi-
ties. We choose to visualize twenty nodes with the highest total

contributions using a stacked histogram. Each bin in the histogram
corresponds to the coverage of one community. The bars with the
same color correspond to the same contributing node. In Figure4
(a) and (b), we show the subgraph before and after a critical tracing
step. After that tracing step, the subgraph propagates to the upper
part of the HoN. We can see that many nodes in the 8-th community
are covered after this step, as indicated by the red arrow in Figure4
(b). The node corresponding to the blue bars contributes most to
the coverage of that community, as the blue bar in the 8-th bin is
the tallest. By clicking on that blue bar, the contributing node is
highlighted in yellow and the nodes reached from it are highlighted
in blue in the subgraph. This indicates that the contributing node
is an important transit point for the ships to propagate into the 8-th
community. By identifying such nodes, domain experts can devise
targeted species control strategies at certain critical ports to maxi-
mize the effectiveness and minimize the cost.

5.3 Aggregation View

The aggregation view provides an overview of the higher-order
dependencies among groups of ports and their connections, cor-
responding to the design requirementR2. It also serves as a
convenient interface to select the higher-order nodes with desired
properties, e.g., the �fth-order nodes that contain ports in differ-
ent eco-realms. The aggregation can be performed on the entire
HoN or synchronized with the subgraph under expansion based on
port grouping. The aggregated node corresponding to an original
higher-order node is determined by converting each port associ-
ated with the higher-order node to the group containing that port.
Formally, denoting ak-th-order node as a sequence of portsni =
[pi0 j pi1; : : : ; pik� 1], where pi0 is the current port andpi1; : : : ; pik� 1

are the previously visited ports, and the group of a portp asG(p),
the aggregated node corresponds to nodeni can be written as

A(ni) = [ G(pi0)jG(pi1); : : : ;G(pik� 1)]: (3)

The edges are aggregated accordingly by summing up the weights
of edges corresponding to the same pair of aggregated nodes.

We group the ports according to their eco-realms. This means
that the higher-order nodes containing sequences of ports are ag-
gregated into the higher-order nodes containing sequences of eco-
realms. The edges are aggregated to show the number of ships mov-
ing among the eco-realms. Twelve groups of ports (i.e., eleven ma-
rine eco-realms and one group containing all freshwater ports) are
considered. Unlike the original nodes, where two consecutive ports
are always distinct, an aggregated node may contain two consec-
utive appearances of the same eco-realm, meaning that the ships
move from one port to another in the same eco-realm. This will be
effective for domain experts to distinguish the higher-order depen-
dencies inside each eco-realm and among the eco-realms, which is
critically important to the study of species invasion.

Coarse Grouping Aggregation.In some cases, the aggregation
technique with the aboveexact groupingmay not be necessary. For
example, users may be interested in the higher-order nodes whose
previous steps contain ports in other eco-realms without caring ex-
actly what those eco-realms are. In other words, it suf�ces to dis-
tinguish the ports in the same eco-realm as the current port and
the ports in different eco-realms. To accommodate this need, we
further design an aggregation scheme withcoarse grouping. With
coarse grouping, the aggregated nodes can still be generated using
Equation (3) but with a slightly different grouping functionG(p).
Unlike the exact grouping function that always maps a port to a
group, the coarse grouping function either maps a port to the group
representing the eco-realm of the current port, or to a special sta-
tus indicating that the port is in a different eco-realm. For exam-
ple, the node [SingaporejPort Klang, Shanghai] will be aggregated
into [Central Indo-Paci�cjCentral Indo-Paci�c, Temperate North-
ern Paci�c] with exact grouping but [Central Indo-Paci�cjCentral
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Figure 5: The aggregation view. (a) Exact grouping using eco-
realms. (b) to (d) The eco-realm of “Temperate Northern Paci�c”
with coarse grouping. (b) Uniform node weight. (c) Nodes are
weighted by the number of original nodes. (d) Nodes are weighted
by the number of ships. The same aggregated node is highlighted
in black in (b) to (d).

Indo-Paci�c, Different Eco-realm] with coarse grouping. In our ex-
periment, the number of aggregated nodes reduces from 396 to 180
with coarse grouping, allowing users to focus more on the between-
group dependencies. Users can switch between exact grouping and
coarse grouping depending on their needs.

Network Layout. We show the aggregation view using the cir-
cular layout, where the nodes are aligned on a circle and their con-
nections are displayed inside the circle. The edges among nodes
belonging to the same current group are colored in blue, while the
edges among nodes belonging to different current groups are col-
ored in brown. We bundle the edges for visual clarity using the
force-directed edge bundling algorithm [13]. An aggregated node
covers a sector of the circle, as highlighted by the black rectangle
in Figure5 (b). The number of layers in the sector represents the
node's order, and the color of a layer represents the group of ports
(i.e., eco-realm). The groups of ports are visited in the order from
the outermost layer to the innermost layer (i.e., the current group
is in the innermost layer). The gray color is reserved for the spe-
cial group “different eco-realm”. For example, the aggregated node
highlighted in Figure5 (b) exhibits �ve layers, from outermost to
innermost, colored in orange, gray, gray, orange, and orange, re-
spectively. This indicates that the node is �fth-order and the ships
visited different eco-realms two and three steps before. The nodes
are ordered according to their corresponding sequences of groups.
That is, the nodes belonging to the same current group occupy a
consecutive sector at the innermost layer, and then the nodes be-
longing to the same previous group are organized consecutively at
the second inner layer, and so on. In Figure5 (b), we can see that the
nodes corresponding to the orange group are placed together. The
second inner layer shows orange on the left side and gray on the
right side, indicating that the nodes with the same previous group
are on the left side and the nodes with different previous groups are
on the right side.

The arc length of the sector is decided by the weight of the cor-
responding node. We provide three types of node weights. Figure5
(b) shows the orange group with the uniform weight, where each
node occupies the same arc length so that different nodes can be
distinguished more easily. In Figure5 (c), the aggregated nodes are
weighted by the number of original nodes contained in them. We
can observe from the arc lengths that most higher-order nodes exist
among ports in the same eco-realm. In Figure5 (d), the aggregated
nodes are weighted by the number of ships related to each node. We
observe that about half of the sector shows higher-order dependen-
cies, within which a large proportion of ships travel within the same
eco-realm, while a small proportion may bring in invasive species
from other eco-realms, suggesting targeted control opportunities. A
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(a) (b)
Figure 6: Identifying a port of interest. (a) The port Salvador in
Brazil is highlighted with a magenta halo in the geographic view.
(b) The nearby ports are listed in the table view ordered by their
numbers of associated higher-order nodes.

complete picture of the aggregation view with coarse grouping can
be found in Figure3 (d). Figure5 (a) shows the aggregation view
with exact grouping. Although it provides more details, it is more
dif�cult to interpret as an overview due to its complexity.
6 CASE STUDY ON SPECIES INVASION VIA GLOBAL SHIP-

PING NETWORK

We worked in person with two domain experts in network science
and marine ecology, and in this section we record the experts' work-
�ow and observations when they �rst used HoNVis to explore the
global shipping network. We then show how HoNVis reveals novel
patterns at the global scale, which are valuable for decision-makers
to devise effective species control strategies.

6.1 Data

Diverse types of data were used for this case study. The global
ship movement data are made available by the Lloyd's List Intel-
ligence, which contains more than two thirds of active ships glob-
ally (measured in dead weight tonnages). The raw data contain
3,415,577 individual ship voyages corresponding to 65,591 ships
that move among 4,108 ports globally between May 1, 2012 and
April 30, 2013. The data also contain metadata of ships, such as
ship type, voyage start and end time, ship size, as well as meta-
data of ports such as coordinates and country. The environmen-
tal conditions (temperature and salinity) of ports are obtained from
the Global Ports Database [17] and the World Ocean Atlas [4, 19].
The eco-region information comes from Marine Ecoregions of the
World [25] and Freshwater Ecoregions of the World [1]. Ports (and
associated ship movements) that have corresponding coordinates,
eco-region and environmental conditions are retained for analysis.

6.2 Domain Experts' Work�ow and Insights

Locating Ports with Higher-Order Dependencies (R1).The ex-
perts wanted to investigate potential species invasions from South
America to Europe via global shipping, and evaluate the in�uence
of higher-order movement patterns of shipping. As shown in Fig-
ure 6 (a), the experts �rst used the geographic view to zoom in to
South America. To identify ports through which ships demonstrate
higher-order movement patterns, the experts chose to color the ports
by the number of higher-order dependencies, and focused on ports
shown in red (the ones that demonstrate the most higher-order de-
pendencies). The number of candidate ports is thus reduced from
hundreds to tens. The experts then simply clicked on the area of
interest, and in the table view (Figure6 (b)), the ports in the area
were sorted by the number of higher-order dependencies. The ex-
perts clicked through the top ports to highlight shipping paths from
those ports, and quickly identi�ed Salvador in Brazil, which shows
a direct connection in the bundle from South America to Europe.
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Figure 7: The higher-order dependencies related to Salvador. (a)
Histograms of ship types and temporal activities of fourth-order
movement patterns from Salvador. (b) Histograms of ship types
and temporal activities for all ships from Salvador. (c) Higher-order
dependencies related to Salvador in the dependency view.

Exploring Higher-Order Dependencies (R3).The experts then
evaluated how the movement pattern from Salvador is in�uenced
by from where the ships came to Salvador. After selecting Sal-
vador in the table view, all its higher-order dependencies are dis-
played in the dependency view (Figure7 (c)). At a glance, the
experts knew that without knowing a ship's previous locations, the
ship's next step from Salvador is uncertain. This is revealed by both
the weak connections (dimmed visually) from the �rst-order node
[Salvadorj] (highlighted by the blue arrow in Figure7 (c)) to all 16
potential destination ports on the right, and the white entropy box of
[Salvadorj] (high entropy indicating low certainty). A quick drag-
and-drop selection of the destination ports reveals that the ships
from Salvador are mainly container carriers (UCC), and shipping at
Salvador remains active throughout the year (Figure7 (b)).

Following the link from Rio de Janeiro to the second-order node
[SalvadorjRio de Janeiro] (highlighted by the red arrow in Fig-
ure7 (c)), the experts discovered that knowing ships came from Rio
de Janeiro to Salvador does not signi�cantly in�uence the ships'
choices for the next step, indicated by the light red KLD box (mean-
ing low difference compared with the distribution from the �rst-
order node), and the light blue entropy box (indicating low cer-
tainty). Essentially, this implies thatthe second order is insuf�cient
in capturing the complex dependencies in this case. It is likely that
Rio de Janeiro, being the second largest city of Brazil, has a port
so versatile and provides limited information in narrowing down
complex ship movement patterns. The reason that the second-order
node [SalvadorjRio de Janeiro] is included in HoN is that it bridges
connections from other essential higher-order nodes.

The experts then proceeded to explore dependencies beyond the
second order. By selecting the fourth-order path Salvador! San-
tos ! Rio de Janeiro! Salvador, as highlighted in Figure7 (c),
the experts observed aloop, that if a ship has been observed fol-
lowing the loop at least once, the ship will keep following the loop
for sure. The dark blue entropy box and dark red KLD box at port
[SalvadorjRio de Janeiro, Santos, Salvador] indicate that this pat-
tern displays high certainty and is signi�cantly different than the
�rst-order movement pattern. Moreover, the bar charts (Figure7
(a)) in the dependency view show that ships following this fourth-
order pattern are exclusively cruise ships (MPR) and are only active
in the summer (December to March in the South Hemisphere),re-
vealing the underlying reason behind this higher-order dependency.

Exploring the In�uence of Higher-Order Dependencies in
Propagation (R4). The experts further explored how higher-order

dependencies in�uence the propagation of invasive species via ship-
ping. Speci�cally, knowing that the ships came from Itapoa or
Navengates before sailing through Santos and Rio de Janeiro to
Salvador, the experts wanted to �gure out how the species propa-
gate differently. The experts �rst selected the fourth-order pathway
Itapoa! Santos! Rio de Janeiro! Salvador in the dependency
view, and the corresponding node [SalvadorjRio de Janeiro, Santos,
Itapoa] is automatically selected in the subgraph view. The experts
clicked “Trace” button to see how the species may propagate from
the given port in a stepwise manner. As shown in Figure8 (a), the
species �rst went to Pecem in Brazil and then to New York City in
USA. After that, with high certainty, the species were propagating
toward the blue cluster on the left, which mainly consists of ports in
Northeast America. After tracing a few more steps, the possible dif-
fusion diverged. A branch kept propagating in Northeast America
with high certainty. More interestingly, the species may in�uence
multiple ports in East Asia, represented as the green cluster at the
top-right corner as shown in Figure8 (b), which was topologically
far from the initial port Salvador on the lower left. The experts
noticed the new spike in the stacked histogram, consisting mainly
of a single color (blue). This indicates that a port is making signi�-
cant contribution to the massive dispersion of species in that cluster.
The experts clicked on the dominating blue bar of that spike, and
the subgraph view reveals that Guangzhou was the port that facili-
tated the potential massive spread of invasive species in East Asia.
Knowing that Guangzhou is the entry point to species spreading in
that region is vital when developing targeted invasive species con-
trol strategiesto prevent Brazilian species from invading East Asia.
Tracing back, Guangzhou was invaded by ships sailing from Gibral-
tar through the Mediterranean Sea, then through the Suez Canal to
the Red Sea, passing Jeddah and �nally to Guangzhou. These ports
on the shipping path also deserve close monitoring.

On the contrary, when the experts selected the pathway Naven-
gantes! Santos Arch! Santos! Rio de Janeiro! Salvador in
the dependency view, with high certainty the species will propa-
gate toward the gray cluster at the bottom as shown in Figure8 (c),
which mainly consists of ports in Northwest Europe. The port lead-
ing to the mass diffusion in the cluster was Brunsbuttel. Through
the interactive exploration and comparison, the experts gained a
comprehensive understanding on how the higher-order dependen-
cies may in�uence the subsequent propagation.

Exploring Higher-Order Dependencies at Different Granu-
larities (R2). Finally, the experts wanted to explore the connections
at a higher level: theeco-realmis the largest biogeographic division
of the sea [25]; species coming from other eco-realms are more
likely to be non-indigenous and will incur invasions. The question
is: how do the connections differ whether the previous port was also
in the Tropical Atlantic eco-realm (which Salvador is in) or was in a
different eco-realm? The experts �rst chose to color the ports in the
geographic view with eco-realms. Tropical Atlantic was colored
dark green. Then the experts shifted to the aggregation view, and
chose the sector which both the current and previous ports are in
the Tropical Atlantic eco-realm. The sector is denoted by two lay-
ers of dark green, as shown in Figure9 (a). The aggregation view
reveals ampler and stronger intra-eco-realm connections as denoted
by blue links, compared with inter-eco-realm connections as de-
noted by brown links (mainly connections to Temperate Southern
Africa, Temperate Northern Atlantic, and Temperate South Amer-
ica). By cross-checking with ship types in the dependency view, the
experts found out that variable types of ships exist for this case.

On the contrary, when the experts chose the sector which the
current ports are in Tropical Atlantic but the previous ports are
not (the sector denoted by the innermost layer as dark green and
the outer layer as gray, as shown in Figure9 (b)), the inter-eco-
realm connections are stronger, including additional connections to
Tropical Eastern Paci�c and Central Indo-Paci�c. Meanwhile, the
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Figure 8: (a) Tracing how the species may propagate from Salvador in astepwise manner. (b) The propagation eventually in�uences multiple
ports in East Asia, which are far away from Salvador. (c) Another direction of the propagation covers multiple ports in Northwest Europe.

(a) (b) (c)
Figure 9: Investigating higher-order dependencies at different granularities. (a) Studying a sector which both the current and previous ports
are in the Tropical Atlantic eco-realm. (b) Studying a sector which the current ports are in the Tropical Atlantic eco-realm, but the previous
ports are not. (c) Changing the view in (b) from uniform node weight to weighted by the number of ships.

dependency view suggested that these inter-eco-realm navigation
patterns were exclusively made by container carriers. The experts
came to the preliminary conclusion thatships coming from different
eco-realms were more likely to keep traveling among eco-realms,
posing higher risks of bringing in non-indigenous species. Further-
more, in terms of species management strategies for speci�c types
of ships,container carriers posed the highest risk for the introduc-
tion of non-indigenous species.

Last, the experts changed the widths of sectors from uniform to
the number of ships, as shown in Figure9 (c), which gives an intu-
itive overview of the composition of all higher-order dependencies.
The experts noticed that although ships coming from other eco-
realms to Tropical Atlantic have higher chances of keeping with
the inter-eco-realm voyages, the number of inter-eco-realm trips
was much less than that of intra-eco-realm trips. The fact that the
more risky inter-eco-realm voyages were the minorities suggested
that targeted species control policies only need to focus on a small
fraction of ships and routes.

Insights Revealed by HoNVis at the Global Scale.HoNVis
not only enables interactive exploration as shown in the above use
case, but also reveals the in�uence of higher-order dependencies at
the global scale. For example, one observation was for ports in the
Arctic. The change of climate had been melting the Arctic sea ice
at an alarming speed and opening up Arctic shipping routes [11].
Therefore, there are growing concerns on threats to the valuable
resources in the Arctic posed by invasive species via the unprece-
dented growth of shipping. The PageRank algorithm naturally sim-
ulates the �ow of species hitchhiking onto ships, with random resets
accounting for the changing or unobserved shipping activities. The
PageRank score of each port indicates the relative risk that species

Figure 10: Comparison of PageRank risk simulation on the FoN
and the HoN. Blue ports are risks overestimated on the FoN and
red ports are risks underestimated on the FoN.

will end up to the port in multiple steps. The PageRank risk esti-
mation on the FoN marks multiple ports in the Arctic as high risk,
but as pointed out in Section3, the HoN can improve the result of
PageRank running upon. Surprisingly, the estimated risks for Arc-
tic ports were overwhelmingly overestimated on the FoN. This is
indicated by the ports in blue as shown in Figure10. For example,
the PageRank score of Murmansk, a major Arctic port in Russia,
was 4:52� 10� 4 on the FoN, but only 1:57� 10� 4 on the HoN.
The dependency view suggested that by using the HoN, traf�c from
hub ports such as Rotterdam to the Arctic ports is more likely to go
back immediately to those hub ports rather than moving randomly
among Arctic ports. Thus the relative �ow of species in the Arctic
is smaller on HoN. The information on the overestimation of risks
made possible by HoNVis is important for policy makers.

7 CONCLUSIONS AND FUTURE WORK

We have presented HoNVis, a visual analytics framework for vi-
sualizing and exploring higher-order networks. We focus on the
global shipping network and work closely with domain experts in
network science and marine ecology to compile the task list and de-
�ne design requirements. Our HoNVis design leverages �ve linked
views to enable users to explore the HoN at different levels of de-



tail and investigate higher-order dependencies among higher-order
nodes. By directly contrasting the HoN and its FoN counterpart
and visualizing higher-order dependencies, we tackle the key chal-
lenges in visualizing higher-order dependencies in networks, which
is a milestone in pushing the understanding of the formation and
impact of higher-order dependencies. The ef�cacy of HoNVis is
demonstrated through results gathered by two domain experts who
use the system to investigate species invasion in the global shipping
network. Several critical insights that can only be obtained with the
use of HoNVis are reported.

We acknowledge the limitations of the current version of HoN-
Vis, including the lack of effective visual hints to aid the users in
navigating through the different views, and the challenge of label-
ing when the data are large. We advocate the idea of automatically
producing statistics of all possible dependency structures (such as
large loops) and aiding in the identi�cation of principal patterns,
which is a non-trivial task given the computational complexity.

Besides the application in global shipping and species invasion,
the framework of HoNVis can be generalizable to other types of
HoNs, which we plan to implement in the near future. For exam-
ple, given that air transportation exhibits higher-order dependen-
cies [24], HoNVis can help to explore epidemic outbreak scenar-
ios through domestic and international travels, by substituting ships
with airplanes and invasive species with contagious diseases. Sim-
ilarly, HoNVis can also help to explore information diffusion pat-
terns through phone call or online activities in social networks, by
treating phone call or retweet cascades as ship trajectories.
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